15th Annual Dinner and Demo Night

Monday, May 22, 2017, 6:00 – 10:00 pm

Beach BBQ: 6:00 – 8:00 pm, Beachside Sun Decks
Demos: 7:00 – 10:00 pm, Talk Room 1-2, Royal Tern, Snowy Egret, Compass, Spotted Curlew and Jacaranda Hall

Please join us Monday evening for the 15th Annual VSS Dinner and Demo Night, a spectacular night of imaginative demos solicited from VSS members. The demos highlight the important role of visual displays in vision research and education. This year’s Demo Night will be organized and curated by Gideon Caplovitz, University of Nevada, Reno; Arthur Shapiro, American University; Gennady Erlikhman, University of Nevada, Reno and Karen Schloss, Brown University.

Demos are free to view for all registered VSS attendees and their families and guests. The Beach BBQ is free for attendees, but YOU MUST WEAR YOUR BADGE to receive dinner. Guests and family members must purchase a VSS Friends and Family Pass to attend the Beach BBQ. You can register your guests at any time at the VSS Registration Desk, located in the Grand Palm Colonnade. Guest passes may also be purchased at the BBQ function, beginning at 5:45 adjacent to the Salty’s Tiki Bar.

The following demos will be presented from 7:00 to 10:00 pm, in Talk Room 1-2, Royal Tern, Snowy Egret, Compass, Spotted Curlew and Jacaranda Hall:

Rotating squares look like pincushions

Stuart Anstis, Sae Kaneko, UC San Diego

A square that rotates about its own center appears to be distorted into pincushions with concave sides. This illusory shape changes is caused by a perceived compression along the curved path of motion. Corners stick out furthest from the center of rotation so they get apparently pinched the most.

The Rotating Line

Kyle W. Killebrew, Sungjin Im, Gideon Paul Caplovitz, University of Nevada Reno

If a line changes size at it rotates around its center it will appear to speed up and slow down as a function of its length. Speeding up as the line gets longer and slowing down as it gets shorter. Why can’t the visual system get even this simplest of things right?

Biological Motion

Andre Gouws, Tim Andrews, Rob Stone, University of York

A real-time demonstration of biological motion. Walk, jump, dance in front of the sensor and your actions are turned into a point light display, Using an X-box Kinect sensor and our free software, you can produce this effect for yourself.

Thatcherize your face

Andre Gouws, Peter Thompson, University of York

The Margaret Thatcher illusion is one of the best-loved perceptual phenomena. Here you will have the opportunity to see yourself ‘thatcherized’ in real time and we print you a copy of the image to take away.

The Ever-Popular Beuchet Chair

Peter Thompson, Rob Stone, Tim Andrews, University of York

A favorite at demo Night for the past few years, the Beuchet chair is back with yet another modification. The two parts of the chair are at different distances and the visual system fails to apply size constancy appropriately. The result is people can be shrunk or made giants.

Hemifield-specific camouflage and persistence

Zhiheng Zhou, Lars Strother, University of Nevada Reno

Zhou and Strother (2017) recently reported a new psychophysical method of studying contour visibility under conditions of impending camouflage. Here we show that portions of a single contour or two simultaneously visible contours, one viewed in each hemifield, can succumb to camouflage at different times.

Full immersion in VR with remote interactivity

Matthias Pusch, WorldViz

We will immerse two participants at a time with a high end VR system, and have them experience interactivity with a remote (west coast or Europe) set of participants in the same VR session. What can be observed is the level of natural interaction that evolves. Such co-located and/or remote interactivity is an eye opener for understanding the potential and implication of VR for the future of communication and training.

Audio-Visual Perceptual Illusions: Central/Peripheral Flicker Synchronization by Sound

Shinsuke Shimojo, Caltech, Kensuke Shimojo, St. Mark’s School, and Mohammad Shehata, Caltech

We will demonstrate that simultaneously pulsed circular targets (with a flicker frequency of 4 to 6 Hz), one viewed centrally and the other peripherally, appear to pulse at different rates (likely due to differences in the cone and rod systems), but can be synchronized with a pulsed audio stimulus that captures the visual percept.

Audio-Visual Perceptual Illusions: Expanding/Contracting Double Flash and Spatial Double Flash

Bolton Bailey, Caltech, Noelle R. B. Stiles, University of Southern California and Caltech, Shinsuke Shimojo, Caltech, and Armand R. Tanguay, Jr., University of Southern California and Caltech

At VSS 2016 we demonstrated the “Illusory Rabbit” and “Invisible Rabbit” illusions, both of which indicate that auditory stimuli can capture and modify the perceptual structure of visual stimuli postdictively. This year we will demonstrate two novel variants of the classical double flash illusion, one in which the visual stimulus is a circular contrast gradient that appears to vary dynamically in size, and another in which sequential tones from two separated speakers paired with a single flash induce an illusory flash displaced in the direction of apparent auditory motion.

Virtual Reality Real-time Multiple Object Tracking Psychophysics Platform

Steven Oliveira, Mohammed Islam, Elan Barenholtz, Mike Kleinman, Shannon Whitney, Florida Atlantic University

Experimental platform for immersive multiple object tracking experiment using state-of-the-art virtual reality system. Come enjoy the next generation of psychophysics experiments in a fully immersive 3D environment.

Egocentric and egophobic images

Dejan Todorovic, University of Belgrade, Serbia

Some portraits look (generally) at you from (almost) everywhere – but others never do. Likewise, some depicted roads (practically) always point (by and large) at you – but others never do. Check out how salient these effects are simply by inspecting pairs of identical large images spaced widely apart.

Using Mixed Reality to Study the Freezing Rotation Illusion

Max R. Dürsteler, University Hospital Zurich, Dep. of Neurology

Using a Microsoft Hololens, I demonstrate 3D versions of the “Freezing Rotation Illusion”. When using a back and forth rotating tubular structure surrounding a constantly turning air plane model, the plane is perceived a slowing down, when it co-rotates with its surrounds, speeding up otherwise regardless of the observer’s position.

BrainWalk: Exploring the Virtual Brain in immersive virtual reality

Simon Smith, Bas Rokers, Nathaniel Miller, Ross Tredinnick, Chris Racey, Karen B. Schloss, University of Wisconsin – Madison

We will present a Virtual Brain, which uses immersive virtual reality to visualize the human brain. Wearing an Oculus Rift, you can explore a 3D volumetric brain built from real neuroimaging data. You can also play BrainWalk, a game created to help improve the visual design based on user performance.

Augmented BrainWalk: Hands-on Augmented Reality 3D Brain Exploration

Stefano Baldassi, Moqian Tian , Meta Company; Bas Rokers, Nathaniel Miller, Ross Tredinnick, Chris Racey, Karen Schloss, University of Wisconsin, Madison & Wisconsin Institute for Discovery

We present an Augmented Reality tool that allows users to visualize brain structures in 3D and manipulate them directly. This tool has special advantages in education, in that users can see through the real world, allowing direct teacher-student communication while interacting with the same brain model.

See your own Saccades

Peter April, Jean-Francois Hamelin, Danny Michaud, Stephanie-Ann Seguin, VPixx Technologies

VPixx Technologies presents a series of demonstrations which combine the PROPixx 1440Hz refresh rate visual display, and the TRACKPixx 2kHz eye tracker. See your own saccadic eye movement path plotted directly onto your own retina. Question saccadic suppression by examining objects which are visible only during saccades. See what happens when visual stimuli are stabilized on your retina.

High Speed Gaze-Contingent Visual Search

Kurt Debono, Dan McEchron, SR-Research Ltd

Try to find the target in a visual search array which is continuously being updated based on the location of your gaze. High speed video based eye tracking combined with the latest high speed monitors make for a compelling challenge.

Eyes Wide Shut Illusion

Shaul Hochstein, Hebrew University, Jerusalem

The “Eyes Wide Shut” illusion uses a curved/enlarging mirror to observe one eye at a time, and then, surprisingly, both eyes together in one integrated view. It demonstrates mirror action, binocular integration, and how prior assumptions determine how very approximate information from the world creates perception.

Visual Attention EEG Challenge

Lloyd Smith, Jakob Thomassen, Cortech Solutions, Inc., Cambridge Research Systems, Ltd.

Take the EEG Frequency Tagging Challenge to see whether you or your colleagues will take home the prize for most robust visual spatial attention as measured in an EEG SSVEP paradigm. Don’t look away, though, because moving your eyes might be cause for disqualification! Find out once and for all who among you is best able to focus visual attention and avoid distractions.

The Box that Defined a Movement

Joshua E Zosky, Michael D. Dodd, University of Nebraska – Lincoln

By surrounding objects (which can be perceived moving leftward or rightward) with a three- dimensional box that has a clear direction of motion, viewers are induced to see a directionally congruent perception of motion. Examples of the phenomenon include: spinning orb, spinning dancer, and The Orb that Destroys Stars.

The size-weight illusion

Cristina de la Malla, Vrije universiteit Amsterdam

A small object feels heavier than a larger object of the same mass. This is known as the size-weight illusion. We will provide the opportunity to experience several variations of the illusion.

The FechDeck: a handtool for exploring psychophysics

James Ferwerda, Center for Imaging Science, Rochester Institute of Technology

The FechDeck is an ordinary deck of playing cards modified to support exploration of psychophysical methods. The deck allows users to conduct threshold experiments using Fechner’s methods of adjustment, limits, and constant stimuli, scaling experiments using Thurstone’s ranking, pair comparison, and category methods, and Stevens’ method of magnitude estimation.

Going to the movies: Immersion, visual awareness, and memory

Matthew Moran, Derek McClellan , Dr. D. Alexander Varakin, Eastern Kentucky University

The observer will view a movie clip through a scaled down detailed replica of a movie theater that served as the experimental condition of the study. An unexpected stimulus will cross the stage area in front of the movie screen at the 6:36 mark.


VSS Staff

Back by popular demand. Strobe lights and ping pong!